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What is Machine Learning?

Machine learning uses statistical

techniques to give computers the )/
ability to "learn” with data, without | i tictice
being explicitly programmed.

Artificial intelligencé

>

Machine Learning
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Traditional Programming

 Know something about the task
Data

Traditional Output Explicitly tell the machine how to complete it

Program Programming

Test the model on something you know

e Deploy your program!



Traditional Programming Example: Hate
Speech Detection

* Know something about the task * Hate speech usually contains the
words in this list | made: list.txt

* Write a program that looks for

* Explicitly tell the machine how to
these words

complete it

e Test the model on some hate
speech that | found. “Wow it works
on a bunch of these!”

* Test the model on something you
know

* Deploy your program! * Deploy!



Machine Learning?

Data Mining: Get data that you know something

Data . about
Machine Program
Output Learning . '(Ij'rain the Model: “Teach” the machine about that
ata

Test the model on something you know

Deploy the program!



Machine Learning Example: Hate Speech

Detection

* Data Mining: Get data that you know
something about

* Train the Model: “Teach” the machine
about that data

* Test the model on something you know

* Deploy the program!

| have 2 data sets, one of hate speech and
one of not hate speech

| throw all of this data at a “classifier”
that uses statistics to figure out what is
hate speech and what isn’t.

Test the model on some more hate
speech that | found. “Wow it works on a
bunch of thesel”

Deploy!



This “machine learning” is super useful

* For understanding cybercrime to
* Predict their communications

)

* Link accounts using writing style

ldentify Scams

|dentify Hate Speech

* Detect Phishing Sites and Emails Identify Child Porn

* Identify items for sale/transactions Study their structure



private messenger, post status updates, manage your profile and so much more. If you already have an account, login here - otherwise create an account for free today!
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private messenger, post status updates, manage your profile and so much more. If you already have an account, login bere - otherwise create an account for free today!
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Public

Reply to this post

Private
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Public

Reply to this post

WEELNWVENYR
have this

Private

We only have
this when
someone leaks
data
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Private messages
+ publiclthreads

threads

N

Features

Yes

Classifier

> Time

We get this right
about 80% of the
time
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Potential Issues with deploying Al Systems

* ML often finds correlation, not * Externalize risks

causation * Produce errors due to ds distributional
° Bias Shift
* Base Rate Fallacy * Result in systems that exploit states

that fulfill the objective function, but

* Privacy (e.g. membership attacks) do not complete the intended task

e Adversarial ML threats

* Result in antisocial and negative
environmental outcomes

* Distribute errors unfairly

* Lack of transparency

e Have adverse side effects

e Are built to only benefit a subset of
users



Base Rate Fallacy

* Example: Hate Speech Detection
* Hate Speech: 1 in every 1000 posts




Base Rate Fallacy

Example: Hate Speech Detection
Hate Speech: 1 in every 1000 posts
False Positive rate of 5%

True Positive rate of 100%

False Positives




Base Rate Fallacy

* Example: Hate Speech Detection

* Hate Speech: 1 in every 1000 posts
False Positive rate of 5%

* True Positive rate of 100%

* A new tweet is posted, and our
ML method says it’s hate speech.

 What is the probability that it is?

False Positives




Base Rate Fallacy

* Example: Hate Speech Detection

* Hate Speech: 1 in every 1000 posts
False Positive rate of 5%

* True Positive rate of 100%

* A new tweet is posted, and our
ML method says it’s hate speech.

 What is the probability that it is?

° ~2%
o _ p(H|hate)p(hate)
p(hate|H) o

1x0.001
0.05095

* p(hate|H) =



Base Rate Fallacy

* ML can assist in decisions
related to cybercrime, but
commonly the base rate is
skewed. Most things aren’t
crime.

e Adding a person to inspect
the decisions is crucial.




Distribution of Errors

 Occurs when a all of the mistakes of the classifier are distributed to a
subpopulation/group



Distribution of Errors

o © o * Example: Email Phishing Detection
® * Yellow = Yes phishing email
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Distribution of Errors

* Example: Email Phishing Detection
* Yellow = Yes phishing email
* Blue = Benign




Distribution of Errors

* Example: Email Phishing Detection
* Yellow = Yes phishing email
* Blue = Benign

Benign!



Distribution of Errors

* Example: Email Phishing Detection
* Yellow = Yes phishing email

* Blue = Benign

e Squares = Emails in English

 Stars = Emails in German




Distributional Shift

* Occurs when a classifier is trained in one area and deployed in

another.
* Example: Bot or Not?

e Squares = Bots in the
US

e Stars = Bots in Central
Asia
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Distributional Shift

* Occurs when a classifier is trained in one area and deployed in

another.
* Example: Bot or Not?

* * Squares = Bots in the
| * X % .
" * e Stars = Bots in Central
3% % e :
: * Asia
A

*



Conclusion

* Machine Learning can be a great tool for studying and preventing
cybercrime, but is prone to adverse side effects that are often
invisible to those deploying them.



Contact Info

e Rebekah@esat.kueluven.be
e @bekah Overdorf

 Computer-Supported Cooperative Crime
* Garg, Afroz, Overdorf, Greenstadt.

* Under the Underground
e Overdorf, Troncoso, McCoy, Greenstadt

* PQOTs: Protective Optimization Technologies
* Overdorf, Balsa, Troncoso, Gurses

* Blogs, Twitter Feeds, and Reddit Comments: Cross-domain Authorship Attribution
* Overdorf, Greenstadt

 How Unique is Your. onion? An Analysis of the Fingerprintability of Tor Onion Services
* Overdorf, Juarez, Acar, Greenstadt, Diaz.



Backups



Automated Labeling



Labeling

Private messages

+-pubhcﬁhreads
1 \

N

Features

Features

Features

No

Features

Yes

> Time
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Post Example

Time



Post Example

Time



Post Example

Time



Post Example
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Post Example

Time



Post Example

Time Since
|

I 1

Time

Sends PM
Creates Thread
f Sends PM
Sends PM
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Finding Ground Truth

Number of Received PMs

Time Thread Creator Receives PMs
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Histogram of all of the
“time since” values across
every thread posted on the
entire forum.
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Finding Ground Truth
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Finding Ground Truth

Number of Received PMs

Time Thread Creator Receives PMs

2500

N
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[ Carders

~2400 messages were sent
to users within 15 minutes
of them creating a thread.
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Finding Ground Truth

Number of Received PMs

Time Thread Creator Receives PMs

2500
[ Carders
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1000 ~ Users DO receive rr;\essages
without posting threads
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Finding Ground Truth

Number of Received PMs

Time Thread Creator Receives PMs

2500

N

o

o
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[ Carders

But receive more after

/ they’ve posted something
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Finding Ground Truth

Number of Received PMs

Time Thread Creator Receives PMs
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N
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[ Carders

They go back to normal
levels a few hours later
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Finding Ground Truth

Time Thread Creator Receives PMs
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Finding Ground Truth

Time Thread Creator Receives PMs
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Finding Ground Truth

Frequency of Received PMs per Minute

PM times to Thread Creator
Since Thread Created: Carders
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Finding Ground Truth

Frequency of Received PMs per Minute

PM times to Thread Creator
Since Thread Created: Carders

fix) =0.10e"1-87x 1. 0.06e0-60x
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Finding Ground Truth

Frequency of Received PMs per Minute

PM times to Thread Creator
Since Thread Created: Carders

fix) =0.10e~187X + 0.06e~0-60x
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Time
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Private messages

+ publiclthreads
1 \

Public

threads
I

N

> Time
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Private messages
+-pubhcﬁhreads

Public

threads
I

N

Features

Private?

> Time
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Private messages
+-pubhcﬁhreads

Public
threads

N

Features

Private?

Classifier

> Time
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Private messages Public
+ publiclthreads threads

N

> Time

Features

Private? -
Classifier




Private messages
+ publiclthreads

threads

N

Features

Yes

Classifier

> Time

We get this right
about 80% of the
time

56



Structure



PM Data Analysis

* Who's important?

 Who has the most influence?

 What do communities look like?

* |s forum-enforced banning effective?

Can we decide which user to remove to be the most disruptive?
How does money move?

How much is a product actually sold for?

Which items actually sell?

How does trust flow/scale?

Can we link accounts?



The Data

Nulled
(599085 Users)

Carders
(8425 Users)

Users With PMs

L33tCrew
(18834 Users)

Blackhat World
(8718 Users)

59



The Data

Carders

* German

e Carding
L33tCrew

* German

e Carding
BlackhatWorld

e English

* Young at leak
Nulled

e English

* Huge

* Varried

Nulled L33tCrew
(599085 Users) (18834 Users)

Carders Blackhat World
(8425 Users) (8718 Users)

Users With PMs
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Motivation

* How does trust scale?
 How are the forums organized?

* Who is important?
* Leaders, central members

* How can we disrupt them?
* Or how can’t we?



Motivation

* How does trust scale?
 How are the forums organized?

* Who is important?
* Leaders, central members

* How can we disrupt them?
* Or how can’t we?



Community Detection

* How are the users organized into communities?
* What do these communities look like?
* What does each specialize in, if at all?



What do these communities look like?

* Dunbar Number (150)

* Structure
* Mob-like vs Gang-like

* Topics
* Topics are varied, not uniform, meaning communities specialize.

* Louvain Method for community detection
* LDA for topic modeling
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BlackhatWorld

203 Members:
Bots
(blogger generator,
promoter)

142 Members:

Ebook,
Tubeautomator,
Spammer bots

212 Members:
Video upload,
Captcha solving
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111 Members:

gamekeys,

notebook,

S
S
)

o
S
)

=

N

o)

—

>
)
c
o
=
o
)
=

=
a
>

124 Members:

Jabber,
Blackberry,

laptop
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198 Members:
Accounts
(paypal, steam),
Socks

393 Members:
Tickets, Apple
products,
Trojans

116 Members:
Accounts and
keys, Server,
Perfume
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Motivation

* How does trust scale?
 How are the forums organized?

* Who is important?
* Leaders, central members

* How can we disrupt them?
* Or how can’t we?



Who's important?

* Degree Centrality
 Raw number of connections
* Associated with higher trust

* Betweenness Centrality
* Number of shortest paths that pass through the node
* More information

* Closeness Centrality
e How far is this node from all other nodes
* Lowest transaction costs

* Eigenvector Centrality
* How much influence does this node and it’s neighbors have



Results

BlackhatWorld Carders L33tCrew
Cent.|C B ID OD D C B ID OD D C B ID OD D
E 10.08 0.66 0.81 0.50 0.71 [-0.43 0.79 091 0.62 0.77 |-0.550.85 0.95 0.84 0.91
C 0.33 0.18 0.51 0.37 -0.19 -0.33 -0.11 -0.21 -0.39 -0.51 -0.35 -0.41
B 0.81 0.84 0.88 0.90 0.83 0.90 0.91 0.92 0.94
D 0.56 0.85 0.71 0.88 0.88 0.96
OD 0.87 0.94 0.96
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Results

BlackhatWorld Carders L33tCrew
Cent.|C B ID OD D C B ID OD D C B ID OD D
E 10.08 0.66 0.81 0.50 0.71 [-0.43 0.79 091 0.62 0.77 |-0.550.85 0.95 0.84 0.91
C 0.33 0.18 0.51 0.37 20.19 -0.33 -0.11 -0.21 -0.39 -0.51 -0.35 -0.41
B 0.81 0.84 0.88 0.90 0.83 0.90 0.91 0.92 0.94
D 0.56 0.85 0.71 0.88 0.88 0.96
OD 0.87 0.94 0.96

* On BlackhatWorld — Everything is correlated.

* On L33tCrew and Carders — Everything but closeness centrality is
correlated.

* Closeness Centrality - How far is this node from all other nodes
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Motivation

* How does trust scale?
 How are the forums organized?

* Who is important?
* Leaders, central members

* How can we disrupt them?
* Or how can’t we?



Banning

* Duplicate Accounts

* Ripping
* Spamming



What happens when members are banned?

30 Days 30 Days

Time

u, Banned
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What happens when members are banned?

30 Days 30 Days

[ 1 |
] ] |
| | I

“Small World Metrics”

> Time

Average Clustering Coefficient
Average Path Length
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What happens when members are banned?

30 Days 30 Days

| |

. . Time

u, Banned

Degree Centrality
Betweenness Centrality
Closeness Centrality
Eigenvector Centrality



Results

BlackhatWorld Carders L33tCrew
CM AACC AAPL| AACC AAPL| AACC AAPL
Betweenness (B) -0.39 0.32 [-0.12*%** -0.05*| -0.05 0.11
Closeness (C) 0.07 -0.12 | -0.07** -0.05*| -0.19% 0.11
Degree (D) -0.15 0.22 [-0.19*** -0.03 -0.06 0.10
Eigenvector (E) 0.07 -0.12 |-0.14%** _0.04 -0.01 0.004
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Results

BlackhatWorld Carders L33tCrew
CM AACC AAPL| AACC AAPL| AACC AAPL
Betweenness (B) -0.12%%* -0.05%* 005 0.11
Closeness (C) Few Banned -0.07*%% -0.05* Bapsad st
Degree (D) Members -0.19%%* -0.03

Eigenvector (E)

-0.14%%% 0,04

same time

p-value: 0.05> * > 0.01 > ** > 0.001 > ***
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Results

BlackhatWorld Carders L33tCrew
CM AACC AAPL| AACC AAPL| AACC AAPL
Betweenness (B) -0.12%%* -0.05%* 005 0.11
Closeness (C) g -0.07** -0.05* -0.19% = 0.1
Degree (D) ¢ -0.19%%* -0.03 !
Eigenvector (E) -0.14%%*% _0.04 0.01 04

p-value: 0.05> * > 0.01 > ** > 0.001 > ***
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Results

BlackhatWorld Carders L33tCrew
CM AACC AAPL| AACC AAPL| AACC AAPL
Betweenness (B) -0.12%%* -0.05%* 005 0.11
Closeness (C) g -0.07** -0.05* -0.19% = 0.1
Degree (D) ¢ -0.19%%* -0.03 !
Eigenvector (E) -0.14%%*% _0.04 0.01 04

p-value: 0.05> * > 0.01 > ** > 0.001 > ***

* Individuals being banned are not close to other nodes.



