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What is Machine Learning?

Machine learning uses statistical 
techniques to give computers the 
ability to "learn" with data, without 
being explicitly programmed.



Traditional Programming

Traditional 
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• Know something about the task

• Explicitly tell the machine how to complete it

• Test the model on something you know

• Deploy your program!



Traditional Programming Example: Hate 
Speech Detection

• Know something about the task

• Explicitly tell the machine how to 
complete it

• Test the model on something you 
know

• Deploy your program!

• Hate speech usually contains the 
words in this list I made: list.txt

• Write a program that looks for 
these words

• Test the model on some hate 
speech that I found. “Wow it works 
on a bunch of these!”

• Deploy!



Machine Learning?

Machine 
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• Data Mining: Get data that you know something 
about

• Train the Model: “Teach” the machine about that 
data

• Test the model on something you know

• Deploy the program!



Machine Learning Example: Hate Speech 
Detection

• Data Mining: Get data that you know 
something about

• Train the Model: “Teach” the machine 
about that data

• Test the model on something you know

• Deploy the program!

• I have 2 data sets, one of hate speech and 
one of not hate speech

• I throw all of this data at a “classifier” 
that uses statistics to figure out what is 
hate speech and what isn’t.

• Test the model on some more hate 
speech that I found. “Wow it works on a 
bunch of these!”

• Deploy!



This “machine learning” is super useful

• For understanding cybercrime to
• Predict their communications 

• Overdorf et. al. 2018 (arxiv)

• Link accounts using writing style 
• Afroz et. al. 2012

• Detect Phishing Sites and Emails
• Xiang et. al. 2011, Basnet et. al. 2008 

• Identify items for sale/transactions 
• Portnoff et. al. 2017

• Identify Scams
• McCoy et. al. 2016

• Identify Hate Speech
• Davidson et. al. 2017

• Identify Child Porn
• Peersman et. al. 2012, 2016

• Study their structure
• Garg et. al 2015
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Send message

Public Private

We always 
have this

We only have 
this when 

someone leaks 
data
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Reply to this post
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Potential Issues with deploying AI Systems

• ML often finds correlation, not 
causation

• Bias

• Base Rate Fallacy 

• Privacy (e.g. membership attacks)

• Adversarial ML threats

• Result in antisocial and negative 
environmental outcomes

• Have adverse side effects

• Are built to only benefit a subset of 
users

• Externalize risks

• Produce errors due to ds distributional 
shift

• Result in systems that exploit states 
that fulfill the objective function, but 
do not complete the intended task

• Distribute errors unfairly

• Lack of transparency

• …
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Base Rate Fallacy 

• Example: Hate Speech Detection

• Hate Speech: 1 in every 1000 posts
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Hate 
Speech

Base Rate Fallacy 

• Example: Hate Speech Detection

• Hate Speech: 1 in every 1000 posts

• False Positive rate of 5%

• True Positive rate of 100%

• A new tweet is posted, and our
ML method says it’s hate speech.

• What is the probability that it is?
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Program



Twitter

Hate 
Speech

Base Rate Fallacy 

• Example: Hate Speech Detection

• Hate Speech: 1 in every 1000 posts

• False Positive rate of 5%

• True Positive rate of 100%

• A new tweet is posted, and our
ML method says it’s hate speech.

• What is the probability that it is?
• ~2%

• 𝑝 ℎ𝑎𝑡𝑒 𝐻 =
𝑝(𝐻|ℎ𝑎𝑡𝑒)𝑝 ℎ𝑎𝑡𝑒

𝑝(𝐻)

• 𝑝 ℎ𝑎𝑡𝑒 𝐻 =
1 ∗ 0.001

0.05095

Program



Base Rate Fallacy 

• ML can assist in decisions 
related to cybercrime, but 
commonly the base rate is 
skewed. Most things aren’t 
crime. 

• Adding a person to inspect 
the decisions is crucial. 

Everything

Crime



Distribution of Errors

• Occurs when a all of the mistakes of the classifier are distributed to a 
subpopulation/group



Distribution of Errors

• Example: Email Phishing Detection 

• Yellow = Yes phishing email

• Blue = Benign
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Distribution of Errors

Benign!

• Example: Email Phishing Detection 

• Yellow = Yes phishing email

• Blue = Benign



Distribution of Errors

• Example: Email Phishing Detection 

• Yellow = Yes phishing email

• Blue = Benign

• Squares = Emails in English

• Stars = Emails in German



Distributional Shift

• Occurs when a classifier is trained in one area and deployed in 
another.

• Example: Bot or Not?

• Squares = Bots in the 
US

• Stars = Bots in Central 
Asia
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Distributional Shift

• Occurs when a classifier is trained in one area and deployed in 
another.

• Example: Bot or Not?

• Squares = Bots in the 
US

• Stars = Bots in Central 
Asia



Conclusion

• Machine Learning can be a great tool for studying and preventing 
cybercrime, but is prone to adverse side effects that are often 
invisible to those deploying them. 



Contact Info

• Rebekah@esat.kueluven.be

• @bekah_Overdorf

• Computer-Supported Cooperative Crime
• Garg, Afroz, Overdorf, Greenstadt.

• Under the Underground 
• Overdorf, Troncoso, McCoy, Greenstadt

• POTs: Protective Optimization Technologies 
• Overdorf, Balsa, Troncoso, Gurses

• Blogs, Twitter Feeds, and Reddit Comments: Cross-domain Authorship Attribution
• Overdorf, Greenstadt

• How Unique is Your. onion? An Analysis of the Fingerprintability of Tor Onion Services
• Overdorf, Juarez, Acar, Greenstadt, Diaz.

30



Backups



Automated Labeling
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Post Example
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Finding Ground Truth
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Histogram of all of the 
“time since” values across 

every thread posted on the 
entire forum.



Finding Ground Truth
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Finding Ground Truth
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~2400 messages were sent 
to users within 15 minutes 
of them creating a thread. 



Finding Ground Truth
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Users DO receive messages 
without posting threads



Finding Ground Truth
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But receive more after 
they’ve posted something



Finding Ground Truth
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They go back to normal 
levels a few hours later



Finding Ground Truth
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Finding Ground Truth
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Finding Ground Truth
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Finding Ground Truth
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Finding Ground Truth
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f (__)+f (__)+ f (__)1 if > θ
0 otherwise
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PM Data Analysis

• Who’s important?

• Who has the most influence?

• What do communities look like?

• Is forum-enforced banning effective?

• Can we decide which user to remove to be the most disruptive?

• How does money move?

• How much is a product actually sold for?

• Which items actually sell?

• How does trust flow/scale?

• Can we link accounts?

• …
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The Data
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The Data
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• Carders
• German
• Carding

• L33tCrew
• German
• Carding

• BlackhatWorld
• English
• Young at leak

• Nulled
• English
• Huge
• Varried



Motivation

• How does trust scale?
• How are the forums organized?

• Who is important?
• Leaders, central members

• How can we disrupt them?
• Or how can’t we?
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Motivation

• How does trust scale?
• How are the forums organized?

• Who is important?
• Leaders, central members

• How can we disrupt them?
• Or how can’t we?
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Community Detection

• How are the users organized into communities?

• What do these communities look like?

• What does each specialize in, if at all?
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What do these communities look like?

• Dunbar Number (150)

• Structure
• Mob-like vs Gang-like

• Topics
• Topics are varied, not uniform, meaning communities specialize.

• Louvain Method for community detection

• LDA for topic modeling 
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BlackhatWorld
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BlackhatWorld

203 Members:
Bots

(blogger generator, 
promoter)

142 Members:
Ebook, 

Tubeautomator, 
Spammer bots

212 Members:
Video upload, 

Captcha solving
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Carders

197 Members:
WebMoney, 

VPN

111 Members:
gamekeys,
notebook,

Jabber

124 Members:
Jabber,

Blackberry,
laptop
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L33tCrew

198 Members:
Accounts 

(paypal, steam),
Socks

393 Members:
Tickets, Apple

products, 
Trojans

116 Members:
Accounts and
keys, Server,

Perfume
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Motivation

• How does trust scale?
• How are the forums organized?

• Who is important?
• Leaders, central members

• How can we disrupt them?
• Or how can’t we?
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Who’s important?

• Degree Centrality
• Raw number of connections
• Associated with higher trust

• Betweenness Centrality
• Number of shortest paths that pass through the node
• More information

• Closeness Centrality
• How far is this node from all other nodes
• Lowest transaction costs

• Eigenvector Centrality
• How much influence does this node and it’s neighbors have
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Results
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Results

• On BlackhatWorld – Everything is correlated.

• On L33tCrew and Carders – Everything but closeness centrality is 
correlated. 
• Closeness Centrality - How far is this node from all other nodes
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Motivation

• How does trust scale?
• How are the forums organized?

• Who is important?
• Leaders, central members

• How can we disrupt them?
• Or how can’t we?
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Banning

• Duplicate Accounts

• Ripping

• Spamming
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What happens when members are banned?

30 Days

Time

30 Days

ui Banned
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What happens when members are banned?

30 Days

Time

30 Days

ui Banned

“Small World Metrics”
Average Clustering Coefficient

Average Path Length

Gia Gib
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What happens when members are banned?

30 Days

Time

30 Days

ui Banned

Degree Centrality
Betweenness Centrality

Closeness Centrality
Eigenvector Centrality
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Results
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Results

Few Banned 
Members

Most members 
banned at the 

same time
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Results

Few Banned 
Members

Most members 
banned at the 

same time

• Individuals being banned are not close to other nodes.
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